
WJ Communications, Inc. •  401 River Oaks Parkway  •  San Jose, CA 95134-1918   •  Phone: 1-800-WJ1-4401  •  Fax: 408-577-6620  • e-mail: sales@wj.com  •  Web site: www.wj.com

The Communications Edge™

Tech-note 
Author: J. Mark Steber

PSK Demodulation (Part 1)
Developed during the early days of the deep
space programs, phase-shift keying now finds
widespread use in both military and com-
mercial communication systems. For teleme-
try applications, PSK is considered an effi-
cient form of data modulation because it
provides the lowest probability of error for a
given received signal level, when measured
over one symbol period. Terrestrial microwave
radio links and satellite communication sys-
tems also frequently employ PSK as their
modulation format.

The purpose of this tutorial is to outline the
various practical techniques used for PSK
demodulation. Relative relationships, such as
tradeoffs between cost, complexity, and per-
formance are also discussed. In addition,
ample references are provided the reader for
elaboration on selected topics.

DEFINITIONS

Phase-shift keying (PSK) is a modulation
process whereby the input signal, a binary
PCM waveform, shifts the phase of the out-
put waveform to one of a fixed number of
states. The signal can be written as

Vo(t) = √2S Sin [ωot +              ]

i = 1, 2,... M

-Ts/2 ≤ t ≤ Ts/2

where, S = the average signal power over
the signaling interval, Ts,

M = 2N the number of allowable
phase states

N = the number of bits needed to
quantize M

Three common versions, binary or BPSK
(M = 2), quadrature or QPSK (M = 4), and
8φ-PSK are described in Table 1.

The signal constellation is a pictorial repre-
sentation of all possible signal states [1]. In
each case, the transmitted signal is formed
by appropriately weighting orthogonal carri-

er components. The weighting factor is such
that the signals are constrained to lie on a
circle of radius √E, where E is the transmit-
ted signal energy. This constant-energy/con-
stant-amplitude characteristic is important in
satellite communication links where AM/PM
conversion must be held to a minimum.

Again referring to Table 1, notice that QPSK
and 8φ-PSK systems encode more bits of
information per transmitted symbol than
does BPSK. If a block of information must
be transmitted over the same interval of time
for all three cases, the signaling rate can be
reduced in an M-ary system by a factor of
N. And, since the maximum pulse rate
(symbol rate) through a channel is propor-
tional to its bandwidth, a reduced rate allows
the use of narrower channels. Alternatively, if
the symbol rate is held constant for all three
cases, the higher-order systems transmit
more bits of information through the fixed
bandwidth channel. Therefore, M-ary sys-
tems are termed bandwidth efficient. The
price to be paid for efficiency, however, is an
increase in the system probability of error,
since decisions as to which symbol was

transmitted at any given time are now made
in a more crowded signal space.

M-ary PSK may be characterized in the fre-
quency domain by its spectral density, G(f),
which is of the form

G(f) = A2Ts [          ]2

[2]

where, Ts = (log2 M) Tb the symbol period

1/Tb = the bit rate

fc = the carrier frequency

A2 = a constant proportional to
average power

BPSK and QPSK spectra are compared on
an equal bit-rate basis in Figure 1. Note that
in both cases the spectrum is continuous;
i.e., there are no discrete spectral lines, and
there are nulls at multiples of the symbol rate.

PSK MODULATION TECHNIQUES

Although this article is concerned primarily
with demodulation techniques involved in
PSK systems, it will be helpful to also con-
sider the encoding or modulation process. A
typical BPSK modulator is shown in Figure 2.
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Table 1. Three common versions of phase-shift keying (BPSK, QPSK and 8φ-PSK).
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The incoming unipolar waveform is convert-

ed to bipolar form, and switches current into

and out of the IF port of a double-balanced

mixer. Switching current in this fashion

effectively imparts a 0° or 180° phase shift to

the LO signal, √2S sin ωot. At this point the

PSK DEMODULATION

The demodulation process can be divided
into three major subsections, as shown by
Figure 4. First, since the incoming wave-
form is suppressed carrier in nature, coher-
ent detection is required. The methods by
which a phase-coherent carrier is derived
from the incoming signal are termed, carrier
recovery, and will be covered first. Next, the
raw data are obtained by coherent multipli-
cation, and used to derive clock-synchro-
nization information. The raw data are then
passed through the channel filter, which
shapes the pulse train so as to minimize
intersymbol-interference distortion effects.
(The channel filter is sometimes placed at
the IF input of the demodulator with equiv-
alent results.) This shaped pulse train is then
routed, along with the derived clock, to the
data sampler which outputs the demodulat-
ed data.

The demodulated data will still exhibit an
Mth-order ±180° phase ambiguity which
must be corrected. The most common cor-
rection scheme calls for the transmission of
a known sequence as a data preamble. After
preamble decoding, the demodulator then
inverts the bit streams that are in error..

CARRIER RECOVERY 

The Costas Loop

The conventional Costas loop for BPSK
suppressed carrier recovery is shown in
Figure 5. Analysis of operation is lengthy
and complex; the reader is referred to the
many papers by Lindsey and Simon who
developed much of the original work [3, 5,
6, 8]. In keeping with their notation, the
input signal can be expressed as

x(t) = √2S m(t) sin Φ(t) + n(t)

where, S = the average received signal power

m(t) = the data modulation (±1
bipolar digital waveform)

Φ(t) = ωot  + θ(t) the received signal
phase

waveform is ready for amplification and
transmission, but sometimes is filtered to
minimize intersymbol interference. This fil-
tering will be discussed in a later section.

A block diagram for a QPSK modulator is
shown in Figure 3.
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Figure 1. BPSK and QPSK spectra.
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Figure 3. QPSK modulator.
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BL = one-sided loop bandwidth

Bi = double-sideband, one-sided IF
bandwidth

This final expression is often used to deter-
mine loop bandwidths. Since carrier tracking
can be optimized for a linear PLL by the
adjustment of loop parameters, it is advanta-
geous to analyze and specify the tracking
performance of suppressed-carrier loops in
the same way. Again, Lindsey and Simon
have connected the two by an interesting
relationship termed, squaring loss [5].

σ2φ
2 = 4/ρ SL

σφ2 = SL
-1/ρ

where, ρ = loop SNR S/NoBL,

SL = squaring loss

The term squaring loss (SL) is used to
describe the degradation in loop SNR due to
signal x noise and noise x noise distortion
occurring in the arm filters. Dependent on
the modulation format, input SNR, and fil-
ter type and bandwidth, the SL is quite diffi-
cult to calculate, even using simplifying
expressions developed in [6]. Suffice it to say
that as a practical matter, for uncoded sys-
tems, where E/No > 10 dB, there is little to
be gained by implementing arm filters more
complex than Butterworth 2 poles, which
result in an SL of a couple of dB.

To put things into perspective, Table 2 cata-
logs some of the more important aspects of
tracking performance.

COSTAS LOOP VARIATIONS 

The Polarity Loop

Figure 6 shows a very common implementa-
tion called the hard-limited, or polarity loop.

Ritter has shown that the optimal phase esti-
mator requires a

tanh (K      )
nonlinearity following the in-phase data arm
filter. For large values of its argument, tanh
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Figure 4. Block diagram of a PSK demodulator.

Figrue 5. Conventional Costas loop.

n(t) = additive channel noise

Φ(t) = ωot + θ(t) the VCO phase
estimate

The Costas loop performs both phase-coher-
ent suppressed carrier reconstruction and
synchronous data detection within the loop.
The upper loop is referred to as the quadra-
ture, or tracking loop, and functions as a
typical PLL, providing a data-corrupted
error signal, Zc(t). The lower in-phase, or
decisioning loop provides data extraction at
the output of the lower mixer, and corrects
the data corruption of Zc(t). The corrected
error signal, Zo(t), is applied through loop
filter F(s) to the VCO, which yields a phase
estimate in the form cos Φ(t).

It can be shown that the Costas loop tracks a
doubled phase error signal in the form

ε(t) = Zo(t) α sin 2 φ(t)

with  φ(t) = Φ(t) - Φ(t) 

The variance of the doubled error tracking
jitter σ2φ

2 is used for cycle-slipping calcula-
tions, while σφ2 is used in bit error-rate cal-
culations.

Much work has been done describing the
linear PLL model, and for many carrier
tracking analyses this model will suffice. Out
of this work, a fundamental expression
relates the mean-squared phase-error jitter to
the SNR “in the loop”:

σφ2 = 1/ρ (rads)2 ρ = S/No BL [4] 

For a 2nd-order PLL with loop filter,

F(jω) = 
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(x) equals the polarity or sign of x (±1), and
can be implemented with a hard limiter [7].

Simon has shown [8] that the inclusion of a
limiter introduces a signal suppression factor
into the analysis which can improve or
degrade performance. Results indicate that
for higher E/No ratios, there is an actual
improvement in the loop’s squaring loss.
Also, inclusion of the limiter allows the sub-
stitution of a switching chopper multiplier
for the analog (four quadrant) third multi-
plier, with its inherent dc-drift stability
improvement.

A modified (hard-limited) Costas loop used
for the demodulation of QPSK signals is
shown in Figure 7. Not shown, is the
required block that is used to interleave the
two bit streams and resolve any ±180° phase
ambiguities.

THE REMODULATOR

Another popular carrier recovery technique
is called remodulation, and a BPSK imple-
mentation is shown in Figure 8.

Again, as in the Costas loop, the remodula-
tor generates a loop error signal proportional
to the doubled phase error between incom-
ing phase and its estimate; i.e.,

ε (t) α Sin 2 [Φ(t) - Φ(t)]

It can be shown that the remodulator is sto-
chastically equivalent to the polarity loop;
i.e., hard-limited Costas loop. The remodu-
lator, however, is typically implemented at
frequencies lower than IF. This allows a digi-
tal (baseband) hardware realization, resulting
in a low-cost demodulator.

A remodulation technique for QPSK carrier
recovery and data extraction is shown in
Figure 9. This version of the QPSK remodu-
lator loop can be shown to be stochastically
equivalent to the modified QPSK Costas
loop described earlier [8, 9]. Weber has
developed an expression for the remodulator
S curve, g(φ), the equivalent loop nonlineari-
ty. For high SNR, the phase-detector error
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Figure 6. Hard-limited or polarity loop.

Table 2. Tracking performance.
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Figure 7. Modified (hard-limited) QPSK Costas loop.
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response. Therefore, the QPSK remodulator
loop should exhibit a somewhat faster acqui-
sition time when compared to a convention-
al QPSK Costas loop.

MULTIPLY-FILTER-DIVIDE

Another method of QPSK carrier recovery
used in high-rate, burst-mode systems is that
of the multiply-filter-divide circuit shown in
Figure 10.

Consider the output of the 4th-order non-
linearity y(t)

y(t) = [x(t)]4 x(t) = Sin [ωot +             ]

i = 1, 2, 3, 4

By trigonometric identity (assuming ideal
quadrupling)

y(t) = 3/8 - 1/2 cos [2 ωot + π(i - 1)] 

+ 1/8 cos [4 ωot + 2π(i - 1)]

The filtered output, z(t), contains the
desired harmonic at f = 4fIF, with phase zero
(modulo 2π). Frequency division by four
yields the desired coherent carrier compo-
nent. Tracking jitter is determined largely by
the BPF’s suppression characteristics [10].

CONCLUSION

The second part of this article will cover the
other two subsections of a PSK demodula-
tor: the symbol timing-recovery circuitry
and the channel filter. In addition, bit error
rate (BER) performance will be discussed
and a method of measurement will be sug-
gested.
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4

Figure 8. BPSK remodulator loop.

INCOMING
PSK SIGNAL

RAW DATA OUTPUT

Td

F(s)     

VCO

90°

X

X LPF X
+1

-1        

ε (t) α Sin 2[Φ(t) - Φ(t)]

Sin [ωt + θ(t)]

Figure 9. QPSK remodulator loop.

REMODULATOR

X

+

+1

-1

CARRIER
TRACKING

VCO        F(s)

X

X

RAW DATA "B"

+1

RAW DATA "A"    
90°

LPF

Td

X

90°

-1  

INCOMING
QPSK SIGNAL

DEMODULATOR

LPFX

characteristic approaches a sawtooth with four stable lock points at 0°, 90°, 180° and 270°.
This sawtooth ensures a rapid transition between lock points, minimizing the lingering
hangup effect sometimes occurring in a conventional Costas loop, due to its sin φ S-curve
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